
1BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

CONSIDERACIONES PARA LA IMPLEMENTACIÓN
DE COMPONENTES DE CONSULTA OPENSEARCH Y

DSPACE API EN CMS ESTÁTICOS Y CMS SIN CABECERA

Villarreal Gonzalo Lujan
Universidad Nacional de La Plata PREBI-SEDICI;

Comisión de Investigaciones Científicas CESGI
gonzalo@prebi.unlp.edu.ar

Lautaro Josin Saller
Universidad Nacional de La Plata PREBI-SEDICI;

lautaro.josin@sedici.unlp.edu.ar

Mazullo Juan Cruz
Universidad Nacional de La Plata PREBI-SEDICI

juan.mazullo@sedici.unlp.edu.ar

Carlos Nusch
Universidad Nacional de La Plata PREBI-SEDICI y

Comisión de Investigaciones Científicas CESGI
belchior@fiocruz.br

DOI: 10.22477/xiv.biredial.377
EJE TEMÁICO: Infraestructura tecnológica

RESUMEN

Este trabajo analiza los desafíos y oportunidades de adaptar componentes de búsqueda basados en OpenSearch
y la API de DSpace a arquitecturas modernas de sitios web, específicamente los generadores de sitios estáticos
(SSG) y los CMS sin cabecera. Estos nuevos enfoques ofrecen mejoras en rendimiento, seguridad y escalabilidad
respecto a los CMS tradicionales como WordPress o Joomla, pero requieren un replanteo técnico y conceptual pro-
fundo. El trabajo expone cómo estas arquitecturas desacopladas implican repensar la estructura de los compo-
nentes de consulta existentes, tanto en cuanto a las herramientas tecnológicas utilizadas como a los paradigmas
sobre los que fueron originalmente diseñados. Se presentan estrategias como el uso de índices de búsqueda pre-
construidos, funciones serverless o el patrón Backend for Frontend (BFF), considerando también aspectos críticos
como la seguridad, la gestión de credenciales y el rendimiento. Finalmente, se destaca que la correcta integración
de estos componentes en CMS modernos es clave para garantizar el acceso eficiente y seguro a la información
académica en repositorios institucionales.

Palabras-clave: Sitios web institucionales ; Repositorios institucionales ; Publicaciones científicas; Centros de in-
vestigación.

ABSTRACT

This paper analyzes the challenges and opportunities of adapting search components based on OpenSearch and
the DSpace API to modern website architectures, specifically static site generators (SSG) and headless CMS platfor-
ms. These new approaches offer improvements in performance, security, and scalability compared to traditional
CMSs like WordPress or Joomla, but require a deep technical and conceptual rethinking. The study explores how
these decoupled architectures demand a reconsideration of the structure of existing query components, both in
terms of the technological tools used and the paradigms on which they were originally designed. Strategies such

mailto:gonzalo@prebi.unlp.edu.ar
mailto:lautaro.josin@sedici.unlp.edu.ar
mailto:juan.mazullo@sedici.unlp.edu.ar
mailto:belchior@fiocruz.br
http://alinedasilva@fiocruz.br

2BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

INTRODUCCIÓN: CONTEXTUALIZACIÓN DE LOS REPOSITORIOS INSTITUCIONALES Y LA
EVOLUCIÓN DE LAS ARQUITECTURAS CMS

Los repositorios institucionales (RIs) desempeñan un papel fundamental en la preser-
vación y difusión de la producción académica, actuando como plataformas esenciales para el
acceso a datos de investigación, publicaciones y otros recursos académicos (De Giusti, 2022).
Históricamente, los sistemas de gestión de contenidos (CMS) tradicionales y dinámicos, como
WordPress y Joomla, y Choique en el caso particular de la Universidad Nacional de La Plata, han
sido utilizados para construir sitios web institucionales e integrar estos RIs (Villarreal, Manzur,
Vila, & De Giusti, 2017). La arquitectura típica de estos CMS se caracteriza por una capa de pre-
sentación frontal estrechamente acoplada con la gestión de contenido y la base de datos en el
backend.1 En este contexto, se implementó un componente en PHP para facilitar las consultas a
través del protocolo OpenSearch y la API de DSpace, funcionando como plugins dentro de estos
sistemas (Villarreal, Salamone Lacunza, Vila, De Giusti, & Manzur, 2017).

Sin embargo, en el panorama actual del desarrollo web, han surgido alternativas mo-
dernas como los generadores de sitios estáticos (SSGs) y los CMS sin cabecera (headless). A
diferencia de los CMS tradicionales, cuya lógica se ejecuta en el servidor en tiempo real, los
SSGs pre-construyen archivos HTML estáticos, mientras que los CMS sin cabecera separan el
repositorio de contenido del frontend, entregando el contenido a través de APIs. La adopción de
estas nuevas arquitecturas responde a la necesidad de mejorar el rendimiento, la seguridad, la
escalabilidad y reducir los requerimientos de recursos de hardware (Gustafsson, 2019).

En este contexto de evolución arquitectónica, los componentes de consulta OpenSear-
ch y DSpace API, originalmente diseñados para el entorno dinámico de los CMS tradicionales,
pueden no ser directamente compatibles o funcionar de manera óptima dentro de las arqui-
tecturas estáticas y basadas en API de los SSGs y CMS sin cabecera. Por lo tanto, el objetivo
de este artículo es evaluar las consideraciones y estrategias necesarias para adaptar estos
componentes al nuevo panorama, manteniendo su funcionalidad y alineándose con la filosofía
subyacente de los SSGs y CMS sin cabecera.

La tendencia hacia los SSGs y CMS sin cabecera representa una evolución arquitectónica
significativa en el desarrollo web para sitios institucionales (centros de investigación, labora-
torios, departamentos, etc.) (Diaz, 2018). Esta evolución está impulsada por la necesidad de un
mejor rendimiento y escalabilidad, cruciales para manejar la creciente cantidad de contenido

as the use of prebuilt search indexes, serverless functions, or the Backend for Frontend (BFF) pattern are presen-
ted, also taking into account critical aspects such as security, credential management, and performance. Finally,
the paper highlights that proper integration of these components into modern CMS platforms is key to ensuring
efficient and secure access to academic information in institutional repositories.

Keywords: Institutional websites; Institutional repositories; Scientific publications; Research centers.

3BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

académico y el tráfico de usuarios a los RIs.

Cabe aquí realizar una breve caracterización del contenido que usualmente se publica
en sitios web institucionales. Este tipo de espacios publica típicamente información sobre la
institución, como ser sus objetivos e historia, líneas de investigación, proyectos activos, per-
sonal involucrado e información de contacto. Este tipo de información suele cambiar de ma-
nera esporádica, con lo cual el requerimiento de actualización periódica será reducido. Sin
embargo, estos sitios suelen también publicar sus actividades y resultados, ya sea en forma
de noticias donde publicitan sus avances, eventos, campañas, etc. como también en forma de
publicaciones científicas (artículos, trabajos en congresos, tesis, entre otros recursos). El grado
de actualización de estos contenidos, ya sean noticias o publicaciones científicas, suele estar
fuertemente vinculado al tamaño de cada institución; por ejemplo, un laboratorio con poco
personal publicará pocos artículos al año, mientras que un instituto de investigación con cien-
tos o miles de miembros podría publicar actualizaciones y artículos científicos más de una vez
por semana. Es por ello que, al momento de definir un CMS para sitios institucionales, debe
tenerse en cuenta no solo los tipos de contenido que publica, sino también el grado de actua-
lización de cada uno de ellos, discriminando contenidos estáticos, contenidos de actualización
esporádica, y contenidos de actualización contínua o permanente. Finalmente, es importante
destacar que en la línea de trabajo aquí presentada, el contenido científico no es gestionado
como contenido dentro del mismo CMS, sino que es obtenido desde repositorios instituciona-
les mediante protocolos como OpenSearch o API REST; la Tabla 1 agrupa los diferentes tipos
de contenidos según estos criterios.

Tabla 1 - Tipos de contenidos y origen de los mismos en los sitios web institucionales

Contenido estático local Contenido Dinámico local Contenido dinámico externo

Historia

Objetivos

Líneas de investigación

Integrantes

Noticias

Campañas

Congresos y eventos

Artículos en revistas

Trabajos en congresos

Tesis y tesinas

Libros

Datasets

Fuente: los autores

Los CMS tradicionales, aunque inicialmente convenientes, pueden volverse intensivos
en recursos y potencialmente más lentos con el aumento de la complejidad y el tráfico. Los
SSGs y CMS sin cabecera ofrecen ventajas inherentes en rendimiento al desacoplar la gene-
ración y la entrega de contenido (Tramullas, 2020). Esto sugiere una tendencia hacia arquitec-
turas web más eficientes y especializadas para las instituciones. La inversión y la experiencia
existentes del usuario con plugins basados en PHP para CMS tradicionales proporcionan una
base valiosa, pero también presentan un desafío. La adaptación requerirá comprender las dife-

4BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

rencias fundamentales en cómo estos nuevos sistemas manejan la funcionalidad dinámica y la
recuperación de datos. Los plugins actuales dependen de la ejecución de código PHP en el lado
del servidor para interactuar con las APIs de OpenSearch y DSpace, procesar la información
obtenida y mostrar los resultados dentro del framework del CMS. Los SSGs y CMS sin cabecera
a menudo dependen de JavaScript en el lado del cliente o de procesos en tiempo de construc-
ción para tales características dinámicas. Esto implica la necesidad de repensar el enfoque de
implementación.

FUNDAMENTOS DE LOS GENERADORES DE SITIOS ESTÁTICOS Y LOS CMS SIN CABECERA:
VISIÓN GENERAL ARQUITECTÓNICA Y PRINCIPIOS FUNDAMENTALES

Los generadores de sitios estáticos (SSGs) operan tomando como entrada contenido,
típicamente en formatos como Markdown, reStructuredText, JSON o XML, y plantillas, usual-
mente escritas en HTML con sistemas de templating como Liquid, Go templates o frameworks
de JavaScript. Durante un proceso de construcción, el SSG pre-renderiza páginas HTML está-
ticas que luego se despliegan en un servidor web o una red de entrega de contenido (CDN).
A menudo, los SSGs se integran con frameworks de frontend como React, Vue.js y Angular para
mejorar la interactividad. Los motores de templating juegan un papel crucial al proporcionar
una estructura básica para las páginas web.

El principio fundamental de los SSGs radica en la generación de contenido en tiempo de
construcción, lo que resulta en velocidades de carga rápidas ya que no se requiere procesa-
miento en el servidor para cada solicitud. Este enfoque se alinea con la metodología JAMstack
(JavaScript, APIs, Markup), donde los SSGs a menudo constituyen la parte de “Markup”, mien-
tras que JavaScript maneja las funcionalidades dinámicas y las APIs conectan con servicios de
backend. Además, todo el sitio, incluyendo el código y el contenido, puede gestionarse median-
te sistemas de control de versiones como Git (Tramullas, 2020). La ausencia de bases de datos
y lógica del lado del servidor también reduce la superficie de ataque, mejorando la seguridad.

Por otro lado, un CMS sin cabecera separa el repositorio de contenido backend (el “cuer-
po”) de la capa de presentación frontend (la “cabeza”). El contenido se almacena en una base de
datos y se entrega como datos, típicamente en formato JSON o XML, a través de APIs (RESTful
o GraphQL) a cualquier aplicación frontend (Jain, 2021). El backend incluye una interfaz editorial
para los creadores de contenido.

El principio central de un CMS sin cabecera es el desacoplamiento de la gestión de con-
tenido de la presentación, lo que permite a los desarrolladores utilizar sus tecnologías frontend
preferidas. El enfoque “API-First” asegura que el contenido se acceda y se entregue a través de
APIs, haciéndolo independiente del canal y habilitando estrategias de “crear una vez, publicar
en todas partes”. Esto facilita la entrega de contenido a diversas plataformas y dispositivos
(sitios web, aplicaciones móviles, dispositivos IoT) desde una única fuente de contenido. La
arquitectura desacoplada también permite una escalabilidad independiente del frontend y el

5BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

backend, proporcionando mayor flexibilidad en la elección de tecnologías (Jain, 2021).

Una característica fundamental tanto a los SSGs como a los CMS sin cabecera es la se-
paración de responsabilidades. Los SSGs separan la generación de contenido del servidor,
mientras que los CMS sin cabecera separan la gestión de contenido de la presentación. Esta
separación es clave para lograr rendimiento y flexibilidad. Al pre-construir páginas (SSGs) o
proporcionar datos brutos a través de APIs (CMS sin cabecera), estos sistemas reducen la car-
ga de procesamiento en el servidor durante las solicitudes de los usuarios. Esto conduce a
tiempos de respuesta más rápidos y una mejor escalabilidad (Gustafsson, 2019). La separación
también permite una mayor innovación y elección en las tecnologías frontend. Si bien ambos
ofrecen beneficios de rendimiento, atienden a diferentes necesidades. Los SSGs son ideales
para sitios web con contenido en gran parte estático, pero pueden requerir procesos de cons-
trucción más complejos para las características dinámicas (Newson, 2017). En el contexto de
este trabajo, muchos sitios web institucionales poseen esta característica, en especial cuando
se trata de centros de investigación con baja tasa de publicación de novedades y actualizacio-
nes. Los CMS sin cabecera son más adecuados para la entrega de contenido complejo y multi-
canal donde el contenido necesita ser reutilizado en diversas plataformas (Jain, 2021). Este tipo
de CMS quizás se adecúe más para grandes institutos de investigación, que dispongan una
estructura web jerárquica (muchos subsitios), distribuída (los subsitios se alojan en diferentes
servidores) y federada (la gestión y mantenimiento de cada subsitio cae bajo la responsabili-
dad de diferentes actores de la institución). Sumado a las características de cada institución, la
elección entre un SSG y un CMS sin cabecera también debe considerar los requisitos específi-
cos del sitio web institucional y su interacción con los repositorios. Si la necesidad principal es
mostrar datos de repositorio preexistentes con interacción dinámica limitada, un SSG podría
ser suficiente. Sin embargo, para escenarios más complejos que involucran filtrado dinámico,
contenido personalizado o integración con múltiples plataformas, un CMS sin cabecera podría
ser más apropiado.

ANÁLISIS COMPARATIVO: VENTAJAS Y DESVENTAJAS DE LOS CMS ESTÁTICOS Y SIN CABECE-
RA PARA SITIOS WEB INSTITUCIONALES (VS. CMS TRADICIONALES)

Los CMS estáticos y sin cabecera ofrecen varias ventajas significativas en comparación
con los CMS tradicionales para sitios web institucionales. En términos de rendimiento, ambos
tipos de arquitecturas proporcionan tiempos de carga más rápidos, ya sea mediante páginas
pre-construidas en el caso de los SSGs o a través de la eficiente entrega de contenido median-
te APIs en los CMS sin cabecera. Esta mejora en la velocidad no solo beneficia la experiencia
del usuario, sino que también puede tener un impacto positivo en el posicionamiento SEO. La
seguridad es otra ventaja clave, ya que la ausencia de bases de datos y procesamiento del lado
del servidor en los SSGs, o la separación de la capa de presentación en los CMS sin cabecera,

6BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

reduce la superficie de ataque (Jain, 2021).

La escalabilidad también se ve favorecida en estas arquitecturas modernas. Los archivos
estáticos generados por SSGs pueden servirse fácilmente a través de CDNs, mientras que los
CMS sin cabecera permiten escalar el frontend y el backend de forma independiente. Además,
los desarrolladores disfrutan de mayor flexibilidad y capacidad de personalización al poder
elegir las tecnologías frontend que mejor se adapten a sus necesidades y crear experiencias de
usuario únicas. En términos de costos, los SSGs pueden ofrecer un alojamiento más económi-
co al poder utilizar plataformas más sencillas o CDNs, y ambos tipos de arquitecturas pueden
implicar una reducción en los costos de mantenimiento debido a la menor cantidad de compo-
nentes complejos (Diaz, 2018). Los CMS sin cabecera también facilitan un mejor flujo de trabajo
para los desarrolladores al permitir que los equipos de frontend y backend trabajen en paralelo, y
promueven la reutilización de contenido a través de múltiples canales (Gustafsson, 2019).

A pesar de estas ventajas, los CMS estáticos y sin cabecera también presentan ciertas
desventajas. Su configuración y mantenimiento pueden ser más complejos y requerir habilida-
des de desarrollo especializadas, especialmente para implementar características dinámicas
en SSGs o desarrollar el frontend en CMS sin cabecera. Los SSGs carecen de funcionalidades
dinámicas integradas, y los CMS sin cabecera no incluyen una capa de presentación, lo que
exige la integración de servicios externos o el desarrollo personalizado para características
como búsqueda, comentarios y autenticación de usuarios. Los CMS sin cabecera a menudo no
ofrecen una función de vista previa de contenido para usuarios no técnicos, y la configuración
inicial del entorno de desarrollo y el proceso de construcción en SSGs, o el desarrollo del fron-
tend en CMS sin cabecera, puede llevar más tiempo (Diaz, 2018).

El flujo de trabajo de gestión de contenido puede resultar menos intuitivo para usua-
rios no técnicos en comparación con los CMS tradicionales con editores WYSIWYG, ya que los
SSGs suelen utilizar Markdown y los CMS sin cabecera requieren familiaridad con la interfaz de
backend (Tramullas, 2020). Las actualizaciones o modificaciones de contenido pueden requerir
la intervención de desarrolladores, especialmente en CMS sin cabecera donde el frontend está
separado (Jain, 2021). La implementación de prácticas SEO puede ser más compleja en CMS sin
cabecera al no haber un tema integrado, y tanto los SSGs como los CMS sin cabecera general-
mente tienen un ecosistema de plugins o extensiones más reducido o diferente en comparación
con CMS tradicionales como WordPress o Joomla.

La decisión de adoptar CMS estáticos o sin cabecera para sitios web institucionales im-
plica un equilibrio entre rendimiento y flexibilidad, por un lado, y complejidad y facilidad de
uso, por el otro. Si bien los beneficios en términos de velocidad y escalabilidad son significati-
vos, las instituciones deben considerar la experiencia técnica requerida y el impacto potencial
en los flujos de trabajo de gestión de contenido. Los CMS tradicionales ofrecen una experiencia
más integrada y amigable para los creadores de contenido, pero pueden sufrir problemas de
rendimiento y vulnerabilidades de seguridad a medida que crecen en complejidad. Los SSGs

7BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

y los CMS sin cabecera abordan estos problemas, pero introducen una curva de aprendizaje
más pronunciada y podrían requerir un enfoque diferente para la gestión de contenido y las
funcionalidades dinámicas.

DECONSTRUCCIÓN DE LA IMPLEMENTACIÓN EXISTENTE: ANÁLISIS DE LOS PLUGINS OPEN-
SEARCH Y DSPACE API EN CMS TRADICIONALES BASADOS EN PHP

Para comprender los desafíos de adaptación, es necesario analizar la estructura y el fun-
cionamiento de los plugins OpenSearch y DSpace API existentes en los CMS tradicionales. To-
mando como ejemplo el plugin wp-dspace para WordPress, se puede observar una estructura
típica de plugin que incluye un archivo principal (ej., wp-dspace.php), archivos de configuración
y posiblemente clases personalizadas. Este plugin interactúa con la API de WordPress utilizando
acciones y filtros para integrar su funcionalidad dentro del entorno del CMS (Villarreal, Manzur,
Vila & De Giusti, 2017). Las llamadas a las APIs de OpenSearch y DSpace se realizan utilizando
funciones de PHP (Villarreal, Salamone Lacunza, Vila, De Giusti, & Manzur, 2017). Los resulta-
dos de la búsqueda se muestran dentro del tema de WordPress, ya sea mediante el uso de
shortcodes o widgets.

En el caso de Joomla, la extensión desarrollada sigue el patrón de arquitectura Mode-
lo-Vista-Controlador (MVC) propio del framework, y la interacción con las APIs de OpenSearch y
DSpace se realiza desde el servidor utilizando las clases HTTP proporcionadas por Joomla. La
presentación de los resultados de búsqueda se logra mediante el uso de layouts y módulos
dentro de la plantilla de Joomla.

Choique 1.x es un CMS menos conocido, desarrollado por la UNLP hace más de 10 años1
y utilizado para la implementación del portal principal de la Universidad y de algunos portales
institucionales internos. Choique 1.x también fue desarrollado con una arquitectura extensible
y sobre PHP, similar a WordPress y Joomla. Versiones posteriores a Choique CMS fueron desar-
rolladas sobre Ruby y su framework Rails, y en la actualidad su desarrollo ha sido descontinuado
y su uso es muy acotado.

Los plugins existentes están fuertemente acoplados con los ciclos de vida y las estructu-
ras de API específicas de WordPress, Joomla y Choique. Este fuerte acoplamiento será el prin-
cipal desafío para adaptarlos a la naturaleza desacoplada de los SSGs y los CMS sin cabecera.
Los plugins de WordPress dependen de acciones y filtros, las extensiones de Joomla siguen el
patrón MVC y Choique aprovechaba la arquitectura extensible del framework symfony. Estos son
mecanismos PHP del lado del servidor que no son directamente aplicables a los entornos del
lado del cliente o de tiempo de construcción de los SSGs y los CMS sin cabecera. El código PHP
dentro de los plugins responsables de interactuar con las APIs de OpenSearch y DSpace podría
ser reutilizable, pero el código del framework circundante que maneja la integración y el rende-
1 Desarrollo-CeSPI. (2023). Choique [Código de computador]. GitHub. https://github.com/Desarrollo-CeSPI/choique

https://github.com/Desarrollo-CeSPI/choique

8BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

rizado del CMS probablemente necesitará ser reimplementado o reemplazado con diferentes
tecnologías.

Imagen 1: Plugin wp-dspace utilizado en Wordpress para recuperar publicaciones de repositorios

Fuente: print de tela SEDICI (2025)

OBSTÁCULOS TÉCNICOS Y CONCEPTUALES EN LA TRANSICIÓN A ARQUITECTURAS CMS
MODERNAS

La adaptación de los componentes de consulta OpenSearch y DSpace API a las arqui-
tecturas de CMS estáticos y sin cabecera presenta varios desafíos técnicos y conceptuales.
Uno de los principales obstáculos es la disparidad entre el lenguaje de programación utilizado
originalmente (PHP) y el lenguaje predominante en el desarrollo frontend para SSGs y CMS sin
cabecera, que suele ser JavaScript. Cabe destacar que no se trata sólo de un cambio de len-
guaje de programación, sino también de una modalidad de ejecución de código radicalmente
diferente: mientras que PHP se ejecuta en el contexto de un servidor web, el código javascript
corre típicamente dentro de los navegadores web de los usuarios. Este cambio de paradigma
de la ejecución en el servidor a la ejecución en el cliente, o incluso durante el tiempo de cons-
trucción, implica repensar cómo se inician las consultas de búsqueda y cómo se muestran los
resultados. En el contexto de los sitios estáticos generados por SSGs, no existe un backend
dinámico que pueda consultar directamente las APIs en tiempo de ejecución. Por lo tanto, la
implementación de la funcionalidad de búsqueda requiere estrategias alternativas, como uti-
lizar JavaScript del lado del cliente para llamar a las APIs o pre-construir índices de búsqueda
durante el proceso de generación del sitio.

9BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

Otro aspecto relevante a considerar es la cantidad de consultas enviadas a los reposito-
rios. En los CMS tradicionales, es posible utilizar mecanismos de caché en el servidor que re-
ducen la necesidad de acceder repetidamente a las fuentes de datos. Sin embargo, en el caso
de los CMS sin cabecera, la aplicación frontend se encarga de realizar las consultas pero si no
dispone de un sistema de caché adecuado para almacenar los resultados obtenidos, deberá
realizar estas consultas de manera recurrente. Esto podría provocar una sobrecarga en los
repositorios consultados, y atentar contra la filosofía detrás de los CMS estáticos de reducir la
carga de trabajo de los servidores, ya que se estará trasladando esta carga a los servidores de
los repositorios.

Por otro lado, con respecto al proceso de pre-construcción de sitios usando SSGs deben
tenerse en cuenta algunas consideraciones, en especial las relacionadas con la frecuencia de
actualización de los datos. Como se ha mencionado anteriormente, en los sitios web institucio-
nales se observa una clara diferenciación entre el contenido que permanece estático durante
largos periodos y aquel que presenta actualizaciones frecuentes. Este último tipo de conteni-
do es el que denominamos anteriormente como “contenido dinámico externo” (Tabla 1) y se
obtiene mediante consultas a diversas fuentes de datos (Villarreal, Salamone Lacunza, Vila, De
Giusti & Manzur, 2017) . En este contexto, resulta conveniente poder reconstruir selectivamen-
te diferentes subconjuntos de contenido con frecuencias de actualización distintas. El objetivo
de este enfoque es evitar la necesidad de reconstruir el sitio en su totalidad ante cada cambio,
permitiendo así una mayor eficiencia en el proceso de despliegue. Cabe destacar que esta cla-
sificación no se limita a una dicotomía entre contenido estático y dinámico, sino que pueden
existir múltiples subconjuntos con distintas frecuencias de actualización. Además, como ya se
ha mencionado, el tamaño y la estructura de la institución también influyen en estos tiempos,
haciendo aún más relevante la necesidad de un manejo segmentado y eficiente del contenido.

La gestión de la autenticación para las APIs de OpenSearch y DSpace en un entorno
del lado del cliente (tanto para SSGs como para CMS sin cabecera) también requiere una con-
sideración cuidadosa para evitar la exposición de credenciales sensibles. Además, la gestión
del estado de las consultas de búsqueda y los resultados en el lado del cliente puede ser más
compleja que en una aplicación renderizada en el servidor (Beke, 2018).

Las arquitecturas de plugins de WordPress, Joomla y Choique son específicas de esas
plataformas y no tienen un equivalente directo en los SSGs o CMS sin cabecera. En estos últi-
mos, la funcionalidad a menudo se construye utilizando módulos, componentes o código per-
sonalizado dentro del framework de frontend. Finalmente, los sistemas de templating utilizados
en los CMS tradicionales (ej., plantillas PHP) son diferentes de los utilizados en los SSGs (ej.,
Liquid, Go templates) o frameworks de frontend (ej., JSX en React, plantillas Vue). La lógica de
renderizado de los resultados de búsqueda deberá adaptarse a estos nuevos sistemas.

La transición de un entorno PHP del lado del servidor a un entorno JavaScript del lado

10BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

del cliente (o un proceso en tiempo de construcción) para la funcionalidad de búsqueda es el
desafío técnico central. Este cambio impacta la forma en que se realizan las llamadas a la API,
cómo se maneja la autenticación y cómo se renderizan los resultados. PHP se ejecuta típica-
mente en el servidor en respuesta a las solicitudes de los usuarios. JavaScript, en el contexto de
los SSGs y los CMS sin cabecera, se ejecuta en el navegador del usuario, lo que significa que la
lógica para interactuar con las APIs debe moverse del servidor al cliente, y esto tiene implica-
ciones para la seguridad y el rendimiento. La naturaleza desacoplada de los CMS sin cabecera
presenta un obstáculo conceptual para aquellos acostumbrados al enfoque estrechamente in-
tegrado de los CMS tradicionales. La separación de la gestión de contenido de la presentación
requiere una forma diferente de pensar acerca de cómo se implementan y gestionan muchas
características, en particular la búsqueda sobre repositorios institucionales.

ESTRATEGIAS PARA LA IMPLEMENTACIÓN DE FUNCIONALIDADES DE BÚSQUEDA EN CMS
ESTÁTICOS Y SIN CABECERA

Para implementar la funcionalidad de búsqueda (OpenSearch y DSpace API) en sitios
web generados con CMS estáticos (SSGs), se pueden considerar varias estrategias. Una de ellas
es la búsqueda del lado del cliente con JavaScript. Esta técnica implica obtener e indexar los
datos del repositorio (respuestas de las APIs de OpenSearch y DSpace) durante el proceso de
construcción del sitio y almacenarlos como un archivo JSON o JavaScript estático. Luego, se
utiliza una biblioteca de búsqueda de JavaScript (como Lunr.js o Fuse.js) en el frontend para rea-
lizar la búsqueda en este índice pre-construido. Los resultados de la búsqueda se renderizan
dinámicamente utilizando JavaScript y el sistema de plantillas del SSG.

Otra estrategia es la integración con servicios de búsqueda externos, como Algolia o
Elasticsearch. En este caso, las consultas de búsqueda se envían desde el sitio estático (uti-
lizando JavaScript) a la API del servicio externo, y los resultados devueltos por el servicio se
renderizan utilizando JavaScript.

Para escenarios que requieren una lógica del lado del servidor más compleja (por ejem-
plo, filtrado avanzado, autenticación para el acceso a la API), se pueden utilizar funciones ser-
verless (como AWS Lambda o Netlify Functions) que se activan mediante eventos del lado del
cliente. La función serverless puede entonces interactuar con las API DSpace y devolver los re-
sultados al cliente (Schall, Margaritov, Ustiugov, Sandberg, & Grot, 2022).

En cuanto a los CMS sin cabecera, una estrategia común es el consumo directo de la API
en el frontend. La aplicación frontend (construida con un framework como React, Vue.js o Angular)
llama directamente a las APIs de OpenSearch y DSpace utilizando bibliotecas HTTP. Es impor-
tante tener presente el uso de una caché, como se mencionó en el apartado anterior, para
evitar sobrecargar a los repositorios consultados. Asimismo, la autenticación y autorización de
la API se gestionan dentro de la aplicación frontend, implementando las medidas de seguridad
adecuadas. Los resultados de la búsqueda se renderizan dinámicamente dentro del framework

11BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

de frontend.

Otra opción es el patrón Backend for Frontend (BFF). Esta estrategia introduce una capa de
API intermediaria (construida con una tecnología como Node.js o Python) que se sitúa entre
el frontend y las interfaces de OpenSearch/DSpace. El frontend se comunica con el BFF, que se
encarga de la agregación de APIs, la lógica compleja y, potencialmente, la autenticación antes
de reenviar las solicitudes a las APIs de OpenSearch y DSpace. Esto puede mejorar la seguridad
y simplificar el código del frontend (Falkevych & Lisniak, 2024).

Finalmente, es importante explorar si el CMS sin cabecera elegido ofrece funcionalida-
des de búsqueda integradas o permite indexar fuentes de datos externas. Algunos CMS sin
cabecera pueden proporcionar estas opciones, lo que simplificaría la implementación de la
búsqueda.

La implementación de la búsqueda en SSGs a menudo implica un equilibrio entre la
frescura de los datos y la complejidad del proceso de construcción. La pre-construcción de
un índice de búsqueda proporciona velocidad, pero requiere reconstruir el sitio cada vez que
cambian los datos del repositorio. Las llamadas a la API del lado del cliente ofrecen más datos
en tiempo real, pero pueden afectar el rendimiento. Para los repositorios institucionales donde
el contenido se actualiza con frecuencia, un índice de búsqueda puramente estático podría no
ser ideal. Un enfoque híbrido que utilice llamadas a la API del lado del cliente o que aproveche
las funciones serverless para la recuperación dinámica de datos podría ser necesario. Los CMS
sin cabecera ofrecen más flexibilidad en la implementación de la búsqueda, pero también de-
positan más responsabilidad en el equipo de desarrollo frontend. La elección de la estrategia
correcta (consumo directo de la API frente a BFF) depende de la complejidad de los requisitos
de búsqueda y del nivel deseado de seguridad y rendimiento. El consumo directo de la API
es más simple para funcionalidades de búsqueda básicas. Sin embargo, para escenarios más
complejos que involucran múltiples llamadas a la API, agregación de datos o autenticación
sensible, una capa BFF puede proporcionar un mejor control y seguridad (Falkevych & Lisniak,
2024).

RENDIMIENTO, SEGURIDAD Y ESCALABILIDAD EN CMS MODERNOS: CONSIDERACIONES
PARA LA IMPLEMENTACIÓN DE COMPONENTES DE CONSULTA

Desde el punto de vista de la performance, en el contexto de los SSGs, el rendimiento
se relaciona con la optimización del proceso de construcción para manejar grandes conjuntos
de datos de los repositorios. Se deben considerar las construcciones incrementales y las téc-
nicas de indexación eficientes. El rendimiento de la búsqueda del lado del cliente depende del
tamaño del índice y la eficiencia de la biblioteca de búsqueda de JavaScript utilizada. Para los
CMS sin cabecera, el rendimiento del frontend está ligado a la eficiencia de las llamadas a la API,
las estrategias de almacenamiento en caché y la renderización optimizada de los resultados
de búsqueda dentro del framework elegido. El uso de CDNs para entregar activos estáticos y el

12BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

almacenamiento en caché de las respuestas de la API pueden mejorar significativamente el
rendimiento.

En cuanto a la seguridad, en los SSGs se debe evitar la exposición de claves de API o in-
formación sensible en el código del lado del cliente. Si se utilizan funciones serverless, se debe
garantizar su correcta protección (O’Meara & Lennon, 2020). En los CMS sin cabecera, es nece-
sario proteger las claves y tokens de la API. Se recomienda utilizar mecanismos de autenticación
seguros (como OAuth 2.0) para acceder a las APIs de OpenSearch y DSpace. También se deben
tener en cuenta los posibles problemas de Intercambio de Recursos de Origen Cruzado (CORS)
al realizar llamadas a la API desde el frontend (Petty & Thompson, 2017). La separación del bac-
kend en los CMS sin cabecera generalmente mejora la seguridad.

La escalabilidad en los SSGs se gestiona principalmente a través de la plataforma de
alojamiento o la CDN que sirve los archivos estáticos (Newson, 2017). El proceso de construc-
ción podría requerir optimización para repositorios muy grandes. En los CMS sin cabecera,
el backend del CMS y la aplicación frontend pueden escalar de forma independiente según sus
demandas específicas de tráfico y procesamiento. Es importante asegurarse de que las APIs
de OpenSearch y DSpace también puedan manejar la carga esperada de la nueva implemen-
tación.

La optimización del rendimiento es crucial tanto en los SSGs como en los CMS sin cabe-
cera. Para los SSGs, el tiempo de construcción y la velocidad de búsqueda del lado del cliente
son clave. Para los CMS sin cabecera, la eficiencia de las llamadas a la API y el renderizado del
frontend son primordiales. El almacenamiento en caché puede desempeñar un papel impor-
tante en la mejora del rendimiento en ambos escenarios. Un proceso de construcción lento en
un SSG puede dificultar las actualizaciones de contenido. Una interfaz de búsqueda lenta en
cualquier sistema puede frustrar a los usuarios. La implementación de mecanismos de alma-
cenamiento en caché efectivos en varios niveles (por ejemplo, CDN, navegador, en memoria)
puede mejorar significativamente la capacidad de respuesta de la funcionalidad de búsqueda.
La seguridad en una arquitectura desacoplada requiere un cambio de enfoque desde la pro-
tección del CMS del lado del servidor hacia la protección de la aplicación del lado del cliente y
los canales de comunicación con las APIs externas (Gowda & Gowda, 2024). El manejo cuidado-
so de las claves de la API y la adopción de prácticas de autenticación seguras son esenciales. La
exposición de las claves de la API en el código del lado del cliente puede conducir a un acceso
no autorizado. El uso de métodos de autenticación seguros y, potencialmente, un backend inter-
mediario para el manejo de operaciones sensibles puede mitigar estos riesgos.

13BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

CONCLUSIÓN: NAVEGANDO EL FUTURO DE LA BÚSQUEDA EN REPOSITORIOS INSTITUCIO-
NALES CON TECNOLOGÍAS WEB MODERNAS

En resumen, la adaptación de los componentes de consulta OpenSearch y DSpace API a
los generadores de sitios estáticos y los CMS sin cabecera presenta consideraciones y desafíos
significativos, principalmente relacionados con la diferencia en las arquitecturas, los lenguajes
de programación y los paradigmas de ejecución. Sin embargo, esta transición ofrece benefi-
cios potenciales sustanciales en términos de rendimiento, seguridad y escalabilidad para los
sitios web institucionales y sus repositorios.

Comprender las diferencias arquitectónicas fundamentales y los principios básicos de
los CMS modernos es esencial para abordar estos desafíos de manera efectiva. Las estrategias
de implementación deben considerar el uso de JavaScript del lado del cliente, la integración
con servicios de búsqueda externos, el aprovechamiento de funciones serverless y el consumo
directo de APIs en el frontend.

La adopción de mejores prácticas de desarrollo, como el diseño modular, la abstracción
de APIs, un enfoque basado en la configuración y la documentación clara, será crucial para
crear componentes de consulta que sean fácilmente adaptables a diferentes CMS estáticos y
sin cabecera, priorizando su filosofía de rendimiento y flexibilidad.

Mirando hacia el futuro, la búsqueda remota sobre repositorios institucionales continua-
rá evolucionando con el avance de las tecnologías web. La capacidad de integrar eficientemen-
te los sistemas de búsqueda con arquitecturas web modernas será cada vez más importante
para garantizar un acceso rápido y seguro a la creciente cantidad de información académica
disponible en línea.

REFERENCIAS

Beke, Mathias. (2018). On the comparison of software quality attributes for client-side and server-side
rendering [Tesis de grado Universiteit Antwerpen, Antwerpen, Belgium]. https://denbeke.be/
thesis/versions/mathias-beke-final.pdf

De Giusti, Marisa. R. (2022). Gestión de la calidad y la preservación en repositorios institucionales. Actas
de la XI Conferencia Internacional de Bibliotecas y Repositorios Digitales (pp. 22–28). Ibero-A-
merican Science and Technology Education Consortium.https://www.istec.org/liblink/wp-con-
tent/uploads/sites/2/2022/10/Gestion-de-la-calidad-y-la-preservacion-en-repositorios-institu-
cionales.pdf

Diaz, Chris. (2018). Using static site generators for scholarly publications and open educatio-
nal resources. Code4Lib Journal, (40). https://journal.code4lib.org/articles/13861

https://denbeke.be/thesis/versions/mathias-beke-final.pdf
https://denbeke.be/thesis/versions/mathias-beke-final.pdf
https://www.istec.org/liblink/wp-content/uploads/sites/2/2022/10/Gestion-de-la-calidad-y-la-preservacion-en-repositorios-institucionales.pdf
https://www.istec.org/liblink/wp-content/uploads/sites/2/2022/10/Gestion-de-la-calidad-y-la-preservacion-en-repositorios-institucionales.pdf
https://www.istec.org/liblink/wp-content/uploads/sites/2/2022/10/Gestion-de-la-calidad-y-la-preservacion-en-repositorios-institucionales.pdf
https://journal.code4lib.org/articles/13861

14BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

Falkevych, Vitalii, & Lisniak, Andrii. (2024). Client state management using Backend for
Frontend pattern architecture in B2B segment. Artificial Intelligence, 29(2), 49–60. https://doi.
org/10.15407/jai2024.02.049

Gowda, Priyanka, & Gowda, Ashwath Narayana. (2024). Best practices in REST API design for
enhanced scalability and security. Journal of Artificial Intelligence, Machine Learning and Data Science,
1(2), 827–830. https://doi.org/10.51219/JAIMLD/priyanka-gowda/202

Gustafsson, Natalie. (2019). Developing modern web applications with the React library and WordPress
Headless CMS. [Tesis de grado, Laurea University of Applied Sciences, Helsinki, Finland]. The-
seus. https://www.theseus.fi/handle/10024/172161

Jain, Vivek. (2021). Headless CMS and the Decoupled Frontend Architecture. International Jour-
nal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, 9(4), 1–5. https://doi.
org/10.5281/zenodo.14752509

Newson, Kaitlin. (2017). Tools and workflows for collaborating on static website projects. Code-
4Lib Journal, (38). https://journal.code4lib.org/articles/12779

O’Meara, Wesley, & Lennon, Ruth. G. (2020). Serverless computing security: Protecting appli-
cation logic. Serverless computing security: Protecting application logic. 2020 31st Irish Signals
and Systems Conference (ISSC) (pp. 1–5). IEEE. https://doi.org/10.1109/ISSC49989.2020.9180214

Petty, David, & Thompson, Jacob. (2017). The Not-So-Same-Origin Policy [Whitepaper]. Indepen-
dent Security Evaluators. https://www.ise.io/wp-content/uploads/2018/03/ise_same-origin-
-policy_whitepaper.pdf

Schall, David, Margaritov, Artemiy, Ustiugov, Dimitrii, Sandberg, Aandreas, & Grot, Boris.
(2022). Lukewarm serverless functions: Characterization and optimization. Proceedings of the
49th Annual International Symposium on Computer Architecture (ISCA ’22) (pp. 757–770). Association
for Computing Machinery. https://doi.org/10.1145/3470496.3527390.

Tramullas, Jesús. (2020). Elaboración de productos de información con JAMstack: del sistema
de gestión de contenidos al web estático. Anuario ThinkEPI, 14, pp. 1–7. https://doi.org/10.3145/
thinkepi.2020.e14f05

Villarreal, Gonzalo Lujan, Manzur, Ezequiel, Vila, María Marta, & De Giusti, Marisa Raquel.
(2017). Interoperabilidad con repositorios digitales: uso de OpenSearch en sitios web insti-
tucionales. Actas de la VII Conferencia Internacional sobre Bibliotecas y Repositorios Digitales de América
Latina (BIREDIAL-ISTEC’17) y XII Simposio Internacional de Bibliotecas Digitales (SIBD’17) (pp. 126–140).
Ibero-American Science and Technology Education Consortium. https://sedici.unlp.edu.ar/
handle/10915/63566

Villarreal, Gonzalo Lujan, Salamone Lacunza, Paula, Vila, María Marta, De Giusti, Marisa Ra-

https://doi.org/10.15407/jai2024.02.049
https://doi.org/10.15407/jai2024.02.049
https://doi.org/10.15407/jai2024.02.049
https://doi.org/10.51219/JAIMLD/priyanka-gowda/202
https://www.theseus.fi/handle/10024/172161
https://www.theseus.fi/handle/10024/172161
https://doi.org/10.5281/zenodo.14752509
https://doi.org/10.5281/zenodo.14752509
https://doi.org/10.5281/zenodo.14752509
https://journal.code4lib.org/articles/12779
https://journal.code4lib.org/articles/12779
https://doi.org/10.1109/ISSC49989.2020.9180214
https://www.ise.io/wp-content/uploads/2018/03/ise_same-origin-policy_whitepaper.pdf
https://www.ise.io/wp-content/uploads/2018/03/ise_same-origin-policy_whitepaper.pdf
https://www.ise.io/wp-content/uploads/2018/03/ise_same-origin-policy_whitepaper.pdf
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.3145/thinkepi.2020.e14f05
https://doi.org/10.3145/thinkepi.2020.e14f05
https://sedici.unlp.edu.ar/handle/10915/63566
https://sedici.unlp.edu.ar/handle/10915/63566
https://sedici.unlp.edu.ar/handle/10915/63566

15BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

quel, & Manzur, Ezequie. (2017). A simple method for exposing repository content on institu-
tional websites. Open Repositories 2017, Queensland, Australia. https://sedici.unlp.edu.ar/hand-
le/10915/60507

ANEXO 1

RESUMEN BIOGRÁFICO DE LOS AUTORES

Gonzalo Luján Villarreal

Doctor en Ciencias Informáticas, es director de PREBI-SEDICI de la Universidad Nacional de La
Plata, director del Centro de Servicios en Gestión de Información (CESGI, 2016) de la Comisión
de Investigaciones Científicas de la Provincia de Buenos Aires, coordinador informático de re-
vistas científicas de la Universidad Nacional de La Plata y profesor de la Facultad de Informática
de la misma universidad. ORCID: 0000-0002-3602-8211

Carlos Javier Nusch

Profesor y Licenciado en Letras por la Universidad Nacional de La Plata y Máster en Humanida-
des Digitales por la Universidad de Educación a Distancia de España. Ha publicado varios artí-
culos sobre trabajo académico colaborativo, repositorios digitales, digitalización de patrimonio
cultural, análisis del discurso político y literatura clásica, medieval y moderna. Trabaja en el
Servicio de Difusión de la Creación Intelectual (SEDICI) de la UNLP, en el Proyecto de Enlace de
Bibliotecas (PREBI) y en el repositorio CIC-Digital (CICPBA). Es miembro del Comité Asesor del
Centro de Servicios en Gestión de Información (CESGI) y personal del Observatorio Medioam-
biental La Plata (UNLP - CICPBA - CONICET). Coordina la Oficina de Relaciones Instituciona-
les del Consorcio Iberoamericano para la Educación en Ciencia y Tecnología (ISTEC). Participa
como docente colaborador ad honorem en el curso de posgrado “Bibliotecas y Repositorios Di-
gitales. Tecnología y aplicaciones” de la Facultad de Informática de la UNLP. Ha participado en
proyectos sobre Oralidad, Escritura, Humanidades Digitales Recursos Académicos, Harvesting,
OAI-PMH, Visibilidad Web, Repositorios Abiertos, Producción Académica y Científica, Accesibili-
dad financiados por la UNLP, la CICPBA y el ISTEC. ORCID:0000-0003-1715-4228

Lautaro Josin Saller

Estudiante en Universidad Nacional de La Plata, Provincia de Buenos Aires, Argentina · Progra-
mador informático · PREBI-SEDICI. Estudiante de la carrera Licenciatura en Informatica en la
Universidad Nacional de La Plata. Experiencia. Programador informático. PREBI-SEDICI.

https://sedici.unlp.edu.ar/handle/10915/60507
https://sedici.unlp.edu.ar/handle/10915/60507
https://sedici.unlp.edu.ar/handle/10915/60507

16BIREDIAL - ISTEC 2025 | 08 - 10 oct. | Brasilia - BRASIL

Juan Cruz Mazullo

Se incorporó al equipo de PREBI-SEDICI en el año 2024. Su labor principal dentro del equipo
incluye tareas de diseño y desarrollo de software.

